Thursday, August 12, 2010

New experiment alluding to the matter antimatter asymmetry

In a recent post, I mentioned an experiment measuring the production rates of muons and anti-muons in nuclear collisions and the results shows CP violation. Here is a new one on neutrino and anti-neutrino, which is also argued to display this violation.

Since the 1960s, physicists have been gathering evidence that neutrinos can switch, or oscillate, between three different flavors — muon, electron and tau, each of which has a different mass. However, they have not yet been able to rule out the possibility that more types of neutrino might exist.

In an effort to help nail down the number of neutrinos, MiniBooNE physicists send beams of neutrinos or antineutrinos down a 500-meter tunnel, at the end of which sits a 250,000-gallon tank of mineral oil. When neutrinos or antineutrinos collide with a carbon atom in the mineral oil, the energy traces left behind allow physicists to identify what flavor of neutrino took part in the collision. Neutrinos, which have no charge, rarely interact with other matter, so such collisions are rare.

MiniBooNE was set up in 2002 to confirm or refute a controversial finding from an experiment at the Liquid Scintillator Neutrino Detector (LSND) at Los Alamos National Laboratory. In 1990, the LSND reported that a higher-than-expected number of antineutrinos appeared to be oscillating over relatively short distances, which suggests the existence of a fourth type of neutrino, known as a “sterile” neutrino.

In 2007, MiniBooNE researchers announced that their neutrino experiments did not produce oscillations similar to those seen at LSND. At the time, they assumed the same would hold true for antineutrinos. “In 2007, I would have told you that you can pretty much rule out LSND,” says MIT physics professor Janet Conrad, a member of the MiniBooNE collaboration and an author of the new paper.

MiniBooNE then switched to antineutrino mode and collected data for the next three years. The research team didn’t look at all of the data until earlier this year, when they were shocked to find more oscillations than would be expected from only three neutrino flavors — the same result as LSND.

Already, theoretical physicists are posting papers online with theories to account for the new results. However, “there’s no clear and immediate explanation,” says Karsten Heeger, a neutrino physicist at the University of Wisconsin. “To nail it down, we need more data from MiniBooNE, and then we need to experimentally test it in a different way.”

The MiniBooNE team plans to collect antineutrino data for another 18 months. Conrad also hopes to launch a new experiment that would use a cyclotron, a type of particle accelerator in which particles travel in a circle instead of a straight line, to help confirm or refute the MiniBooNE results.

No comments:

Post a Comment