Results just in from an experiment that levitated open-bottomed paper pyramids on gusts of air reveal a curious phenomenon: When it comes to drifting through the air, top-heavy designs are more stable than bottom-heavy ones. The finding may lead to robots that fly not like insects or birds but like jellyfish.
......
The researchers placed hollow paper pyramids inside the cylinder. The objects were about 1 to 5 centimeters high and were made of tissue paper or letter paper on carbon fiber supports, like tiny homemade kites. Physicist Bin Liu led the experiments, attaching a beadlike weight to a post running down the center of the pyramid and changing the height of the bead to give the object a different center of mass. Common sense says that the pyramid should be most stable when the bead is at the bottom of the post, like ballast in the hold of a ship. But when the team released the pyramids over the subwoofer, the opposite was true: the bottom-heavy pyramids were likely to flip over and fall, whereas the top-heavy ones remained upright and continued to hover (see first video), the group reports in an upcoming issue of Physical Review Letters.
......The team suspected that the effect was due to swirls of air that develop along the pyramid's sides. To see the swirls in action, Zhang's group examined a two-dimensional version of the pyramid experiment in water. They placed upside-down V shapes into a pan of water and rocked it to create currents. As the water ran past the V, it created tiny whirlpools at the ends of the V's two legs (see second video). These swirls pushed away from the upside-down V, moving downward, which exerted an upward force on the V-the same mechanism that creates lift in the pyramids.
If the V was tilted, however, the swirls went in different directions: Those on the higher leg shoved it sideways, while the lower leg got a weaker upward push. This would straighten the upside-down V. Team member Leif Ristroph showed that the same sorts of swirls roll off the sides of the pyramids: They push the pyramid upright as long as the center of mass is above the tilted-up side, much in the same way that you can balance a vertical stick on the end of your finger by moving the bottom of the stick in the direction of the tilt, Zhang says. For bottom-heavy pyramids, this same mechanism causes them to flip over-it's like moving the top of the stick in the direction of the tilt, encouraging it to fall.
The supreme task of the physicist is to arrive at those universal elementary laws from which the cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition, resting on sympathetic understanding of experience, can reach them
Wednesday, February 8, 2012
The physics of floating pyramids
Monday, July 18, 2011
Subwavelength focus of sound
Sound, like light, can be tricky to manipulate on small scales. Try to focus it to a point much smaller than one wavelength and the waves bend uncontrollably — a phenomenon known as the diffraction limit. But now, a group of physicists in France has shown how to beat the acoustic diffraction limit — and all it needs is a bunch of soft-drink cans.
Scientists have attempted to overcome the acoustic diffraction limit before, but not using such everyday apparatus. The key to controlling and focusing sound is to look beyond normal waves to 'evanescent' waves, which exist very close to an object's surface. Evanescent waves can reveal details smaller than a wavelength, but they are hard to capture because they peter out so quickly. To amplify them so that they become detectable, scientists have resorted to using advanced man-made 'metamaterials' that bend sound and light in exotic ways.
Some acoustic metamaterials have been shown to guide and focus sounds waves to points that are much smaller than a wavelength in size. However, according to Geoffroy Lerosey, a physicist at the Langevin Institute of Waves and Images at the Graduate School of Industrial Physics and Chemistry in Paris (ESPCI ParisTech), no one has yet been able to focus sound beyond the diffraction limit away from a surface, in the 'far field'. "Without being too enthusiastic, I can say [our work] is the first experimental demonstration of far-field focusing of sound that beats the diffraction limit," Lerosey says.
Lerosey and his colleagues took a similar approach to an experiment they performed in 2007 and later described theoretically for electromagnetic waves1,2. The group generated audible sound from a ring of computer speakers surrounding the acoustic 'lens': a seven-by-seven array of empty soft-drink cans. Because air is free to move inside and around the cans, they oscillate together like joined-up organ pipes, generating a cacophony of resonance patterns. Crucially, many of the resonances emanate from the can openings, which are much smaller than the wavelength of the sound wave, and so have a similar nature to evanescent waves.
To focus the sound, the trick is to capture these waves at any point on the array. For this, Lerosey and his team used a method known as time reversal: they recorded the sound above any one can in the resonating array, and then played the recording backwards through the speakers. Thanks to a quirk of wave physics, the resultant waveform cancels out the resonance patterns everywhere — except above the chosen can.
After the playback, the can continues to resonate by itself, scattering out the sound energy left inside. Normal waves scatter efficiently, so they disappear quickly. However, the evanescent-like waves are less efficient at scattering, and take roughly a second to make it out of the can — a prolonged emission that allows the build up of a narrow, focused spot. In fact, Lerosey's group found that the focused spot could be as small as just 1/25th of one wavelength, way beyond the diffraction limit. The results are due to be published in Physical Review Letters3.
There is some debate among acoustic scientists as to whether this is the first time anyone has truly beaten the acoustic diffraction limit. Mechanical engineer Nicholas Fang at the Massachusetts Institute of Technology in Cambridge thinks that the results are a first because the focal point is away from the lens, in the far field. But John Page, a physicist at the University of Manitoba in Winnipeg, Canada, who has published evidence for sub-wavelength focusing in the near field4, disagrees. "Super-resolution is super-resolution, no matter in what regime it is obtained," he says.
Still, Page calls the Lerosey group's work "a very important accomplishment" and believes it could find many applications, such as feeding energy to tiny electromechanical devices so they can operate.
Lerosey himself thinks that the simplicity of the apparatus is what bodes so well for applications. "To me, this experiment says, 'we can do it easily, even with Coke cans,' and it opens a door."
[http://www.nature.com/news/2011/110708/full/news.2011.406.html]
Tuesday, June 21, 2011
How do wings work ?
Now Bernoulli’s equation is quoted, which states that larger velocities imply lower pressures and thus a net upwards pressure force is generated. Bernoulli’s equation is often demonstrated by blowing over a piece of paper held between both hands as demonstrated in figure 2. As air is blown along the upper surface of the sheet of paper it rises and, it is said, this is because the average velocity on the upper surface is greater (caused by blowing) than on the lower surface (where the air is more
or less at rest). According to Bernoulli’s equation this should mean that the pressure must be lower above the paper, causing lift. The above explanation is extremely widespread. It can be found in many textbooks and, to my knowledge, it is also used in the RAF’s instruction manuals. The problem is that, while it does contain a grain of truth, it is incorrect in a number of key places.
What’s wrong with the ‘popular’ explanation?
The distance argument;
The ‘equal time’ argument;
The Bernoulli demonstration.
Next, examine a particle moving along a curved streamline as shown in figure 7. For simplicity we can assume that the particle’s speed is constant3. Because the particle is changing direction there must exist a centripetal force acting normal to the direction of motion. This force can only be generated by pressure differences (all other forces are ignored), which implies that the pressure on one side of the particle is greater than that on the other. In other words, if a streamline is curved, there must be a pressure gradient across the streamline, with the pressure increasing in the direction away from the centre of curvature.
Tuesday, August 10, 2010
Bubbles to penetrate cell membranes
Figure caption: The timed expansion and collapse of two bubbles creates a liquid jet that can penetrate a fine hole in the membrane of a cell. From left to right: A laser (green circle) focused inside a water bath locally vaporizes the liquid, creating an expanding bubble (light blue). Just after the first bubble reaches its maximum size, a second laser (red circle)generates another bubble. As the second bubble expands and the first bubble collapses, a rush of liquid forms along the vertical line (pink arrow) between the two, creating a high-speed liquid jet that accelerates toward the cell with enough force to penetrate the membrane.
Monday, May 31, 2010
Flight Of The Bumble Bee Is Based More On Brute Force Than Aerodynamic Efficiency
In recent years scientists have modelled how insect wings interact with the air around them to generate lift by using computational models that are relatively simple, often simplifying the motion or shape of the wings.
"We decided to go back to the insect itself and use smoke, a wind tunnel and high-speed cameras to observe in detail how real bumblebee wings work in free flight," said Dr Richard Bomphrey of the Department of Zoology, co-author of a report of the research published this month in Experiments in Fluids. ‘We found that bumblebee flight is surprisingly inefficient – aerodynamically-speaking it’s as if the insect is ‘split in half’ as not only do its left and right wings flap independently but the airflow around them never joins up to help it slip through the air more easily.’
Such an extreme aerodynamic separation between left and right sets the bumblebee [Bombus terrestris] apart from most other flying animals.
"Our observations show that, instead of the aerodynamic finesse found in most other insects, bumblebees have a adopted a brute force approach powered by a huge thorax and fuelled by energy-rich nectar," said Dr Bomphrey. "This approach may be due to its particularly wide body shape, or it could have evolved to make bumblebees more manoeuvrable in the air at the cost of a less efficient flying style."
Professor Adrian Thomas of Oxford’s Department of Zoology, co-author of the report, said: "a bumblebee is a tanker-truck, its job is to transport nectar and pollen back to the hive. Efficiency is unlikely to be important for that way of life."
Observing insects in free – as opposed to tethered – flight is a considerable challenge. The Oxford team trained bumblebees to commute from their hive to harvest pollen from cut flowers at one end of a wind tunnel. They then used the wind tunnel to blow streams of smoke passed the flying bees, to reveal vortices in the air, and recorded the results with high-speed cameras taking up to 2000 images per second. From these images the team were able to visualise the airflow over flapping bumblebee wings.
The old myth that "bumblebees shouldn’t be able to fly" was based on calculations using the aerodynamic theory of 1918-19, just 15 years after the Wright brothers made the first powered flight. These early theories suggested that bumblebee wings were too small to create sufficient lift but since then scientists have made huge advances in understanding aerodynamics and how different kinds of airflow can generate lift.
Email or share this story:
Story Source:
The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by University of Oxford.
Journal Reference:
- Richard James Bomphrey, Graham K. Taylor and Adrian L. R. Thomas. Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair. Experiments in Fluids, 2009; 46 (5): 811 DOI: 10.1007/s00348-009-0631-8