Braak’s unexpected full analytical solutions of the quantum Rabi model are, however, worthy of celebration [2]. In mathematics and physics there are many, not necessarily compatible, criteria for a model to be both integrable and solvable. Examples include Frobenius’ condition for integrability in differential systems and Liouville’s condition for integrability in dynamical systems [6]. In the realm of quantum physics, it has been assumed that the existence of invariant subspaces associated with conserved quantities, other than energy, might be a necessary condition, as is the case in the Jaynes-Cummings model. The quantum Rabi model possesses naturally an additional discrete symmetry, the parity, which was assumed for some time to be insufficient for yielding a solvable model. Braak has proved that this is not the case and has presented exact analytical solutions of the quantum Rabi model for all parameter regimes. This is a remarkable achievement that adds the model to the short list of integrable quantum systems. Furthermore, Braak is able to take advantage of this key result to propose an operational criterion of integrability, inspired by the case of the hydrogen atom.
Integrability is, following Braak, equivalent to the existence of quantum numbers that classify eigenstates uniquely. It does not presuppose the existence of a family of commuting operators. Surprisingly, he has been able to apply this novel integrability criterion to a more elaborate case, the generalized quantum Rabi model, where a term that allows tunneling between the two atomic states is added. For the latter, he was able to prove that the model is not integrable, because it has an additional symmetry that is broken. However, the model is exactly solvable, and Braak presents the solutions. These are important results advancing the mathematical aspects of the quantum Rabi model in terms of integrability and solvability. Moreover, we should not overlook that the quantum Rabi model is a key physical model describing the interaction of quantum light and matter. [http://physics.aps.org/viewpoint-for/10.1103/PhysRevLett.107.100401]
The supreme task of the physicist is to arrive at those universal elementary laws from which the cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition, resting on sympathetic understanding of experience, can reach them
Tuesday, August 30, 2011
Rabi model exactly solved
Revamp might may not work
They come from the LHC Beauty (LHCb) experiment, one of the four main detectors situated around the collider ring at the European Organisation for Nuclear Research (Cern) on the Swiss-French border.
According to Dr Tara Shears of Liverpool University, a spokesman for the LHCb experiment: "It does rather put supersymmetry on the spot".
Continue reading the main story“Start Quote
End Quote Dr Joseph Lykken FermilabThere's a certain amount of worry that's creeping into our discussions”
The experiment looked at the decay of particles called "B-mesons" in hitherto unprecedented detail.
If supersymmetric particles exist, B-mesons ought to decay far more often than if they do not exist.
There also ought to be a greater difference in the way matter and antimatter versions of these particles decay.
The results had been eagerly awaited following hints from earlier results, most notably from the Tevatron particle accelerator in the US, that the decay of B-mesons was influenced by supersymmetric particles.
LHCb's more detailed analysis however has failed to find this effect. [http://www.bbc.co.uk/news/science-environment-14680570]
Thursday, August 25, 2011
New design of transistors
The team has created a two-layer GaAs/AlGaAs quantum well heterostructure, in which the wave function of one layer extends into the second to modulate the tunneling current between the layers. In this design, a voltage on the first quantum well causes that layer to be depleted of carriers, which changes the subband energy level in the well. As the subband energy approaches the top of the quantum well potential, the wave function extends further and further out toward the second layer. When the wave function overlaps the second layer, the tunneling current can increase as much as two orders of magnitude, a substantial degree of gating leverage.
Although the reported design only works at cryogenic temperatures, a different choice of materials, for example, graphene, may allow operation at more technologically relevant temperatures. – David Voss
Majorana fermions possibly in topological insulators
The search for Majorana fermions is quickly becoming an obsession in the condensed-matter community. To understand the intense interest, I will begin with a practical definition: a Majorana fermion is a fermion that is its own antiparticle. While sophisticated particle physics experiments are testing for Majorana character in neutrinos propagating in three dimensions [1], solid state physicists are more interested in lower dimensional counterparts. The most interesting Majorana fermions that are predicted to appear in materials are zero-dimensional bound states confined to live on various types of topological defects [2]. In a paper published in Physical Review Letters, Pavan Hosur and collaborators from the University of California, Berkeley, predict that these bound states are found in the vortices of the superconductor CuxBi2Se3 [3] (Fig. 1). Once discovered, a set of zero-dimensional Majorana bound states (MBS) are predicted to exhibit exotic non-Abelian statistics when exchanged among each other. While of great fundamental interest, perhaps the biggest driving factor in the search is a well-regarded proposal for (topological) quantum computation, which uses this unique statistical property of the MBS to robustly process quantum information free from local sources of decoherence [4, 5].
....
Naively, this eliminates all fermions at play in conventional electronic systems from being Majorana. The key to getting around this obstacle is noting that one finds many different emergent fermionic vacua/ground states in electronic systems that are qualitatively different from the fundamental vacuum of spacetime. To illustrate this, consider a BCS superconductor ground state filled with a condensate of paired electrons. If we again scatter two electrons off each other, they can indeed bind into a Cooper pair and “annihilate” into the fermionic vacuum! However, if the vacuum is of s-wave character, the most common superconducting ground state, then the two electrons bound into the Cooper pair must have opposite spin and are thus not Majorana (the antiparticle of an electron with spin up, in this case, is one with spin down). The solution to this problem is manifest: we must find a way to get around the spin-quantum number. Currently, there are two primary mechanisms to do this: (i) the superconducting vacuum can have spin-triplet pairing, which pairs electrons with the same spin or (ii) the superconductivity can exist in the presence of spin-orbit coupling or some other mechanism which will remove the spin conservation. Solution (i) is the paradigm for the first proposals of the existence of MBS as quasiparticles of a fractional quantum Hall state which models a two-dimensional electron gas at filling ν=5/2 [6], and as vortex excitations in some theories of the unconventional superconducting state of Sr2RuO4 [7]. These proposals offer real material candidates for finding MBS, but experiments in both of these systems require utmost care in sample production and measurement precision. To date, MBS excitations have not been clearly distinguished in either of these systems. Recently, solution (ii), which was first implemented by Fu and Kane in topological insulator/superconductor heterostructures [8], has been garnering attention due to more inherent practicality. This has been followed up nicely with further predictions of MBS in low-dimensional spin-orbit-coupled heterostructures in proximity to s-wave superconductors [9].
The seminal proposal of Fu and Kane predicts that if the surface of a three-dimensional topological insulator is proximity-coupled to an s-wave superconductor, then vortex lines in the superconductor will trap MBS where the lines intersect the topological insulator surface [8]. This proposal requires two main ingredients: (i) a topological insulator and (ii) an s-wave superconductor that can effectively proximity-couple to the surface of the topological insulator. Despite all of the recent publicity about the discovery of three-dimensional topological insulators [10], finding a suitable topological insulator for these experiments is still a difficult task. The reason being that, as of yet, there are no topological insulator materials that are completely insulating in the bulk, despite intense experimental programs dedicated to this task. The most commonly studied topological insulators are variations of either Bi2Se3 or Bi2Te3 , in which it has been difficult to tune the bulk to a completely insulating state [11]. Thus, while many experiments have confirmed the robust nature and structure of the surface states, these materials, having bulk carriers, are not true topological insulators.
It is then natural to ask, What is a doped topological insulator good for? While one hopes that many of the topological phenomena of the true insulating state might be manifested in some form in a doped system, many questions still remain unanswered. However, Hosur et al. have made a striking prediction that MBS can still be realized in doped topological insulators under certain mild conditions [3]. A true insulating state is important in the Fu-Kane proposal because if the bulk contains low-energy states then the MBS can tunnel away from the surface and delocalize into the bulk, which effectively destroys the MBS. Hosur et al. circumvent this delocalization by requiring that the entire doped topological insulator become superconducting. They show that as long as the doping is not too large, vortices in superconducting topological insulators will bind MBS at the places where the vortex lines intersect the material surfaces. While this might seem like a big leap in complexity, experimental evidence already shows that, indeed, copper-doped Bi2Se3 is a superconductor below 3.8 K [12]. In this context, Hosur et al. make a strong prediction that vortex lines in superconducting CuxBi2Se3 can harbor MBS.
To understand the prediction, we begin with the Fu-Kane proximity effect scenario, as mentioned above, with a vortex line stretched between two surfaces. MBS are trapped where each end of the vortex line meets the topological insulator surface (see Fig. 1). If we tune the bulk chemical potential to lie in the conduction band, as opposed to the nominal insulating gap, then the MBS on each end of the vortex line could tunnel through the bulk and hybridize with the state on the opposite end. This is prevented in Hosur et al.’s work by inducing a superconducting gap in the entire bulk so that the MBS remain trapped. If the superconducting state were homogeneous, then the MBS would be trapped on the ends of the vortex line for any doping level. However, the superconducting order parameter varies rapidly near the vortex core, which is essentially a thin tube of normal metal (doped topological insulator) containing bound states with energies that lie below the nominal superconducting gap. It is easiest for the MBS to tunnel through the “mini-gap” region in the vortex core, and in fact, Hosur et al. go on to show that there is a critical chemical potential level where a vortex-core bound state becomes gapless and the MBS can easily tunnel through the vortex line to annihilate. Beyond this critical doping, the vortex line re-enters a gapped phase, but the MBS are absent. See Fig. 1 for an illustration of this process. The critical chemical potential can be calculated solely from low-energy information about the Fermi surface, and depends on the orientation of the vortex line with respect to the crystal structure. It is estimated that vortex lines oriented along the c axis of CuxBi2Se3 are just on the trivial side of the transition, while vortices perpendicular to the c axis should be well within the nontrivial regime and should trap MBS.
What is the standard model ?

The standard model, as it is usually called, tries to encompass all possible interactions including production and annihilation of somewhat elusive elementary particles that are supposed to partly make up the universe. The following quantity explains it without words:
