The supreme task of the physicist is to arrive at those universal elementary laws from which the cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition, resting on sympathetic understanding of experience, can reach them
Monday, May 9, 2011
Electron induced rippling in graphene
[1]PRL, 106:045502(2011)
Wednesday, March 16, 2011
A One-Way Wall of Silence
The recent development of metamaterials and photonic crystals has provided a route to control the propagation of electromagnetic waves through the engineered structure of a material. Combined with transformation optics, such control is rewriting the expected rules of behavior governing the propagation of electromagnetic waves, and offers myriad possibilities ranging from imaging to communications and stealth applications. Sound is also a wave, and so the manipulation of acoustic waves may be expected to carry over by analogy to their electromagnetic counterparts. Li et al. present a sonic crystal composed of a periodic array of steel rods, the geometry of which was selected to give rise to a band gap, whereby the transmission of sound waves in a specific frequency range is prohibited in one direction but allowed in the opposite direction. The authors also show that by mechanically changing the spacing of the array (by rotating the square steel rods), the diode-like behavior can be switched on and off. A range of applications might be expected to follow, from acoustic isolation and filtering to ultrasound imaging.
Phys. Rev. Lett. 106, 84301 (2011).
Monday, February 28, 2011
Accoustic diode
The device consists of a two-dimensional sonic crystal arranged in a mesh of square steel rods. By rotating the steel rods, Li et al. are able to manipulate the unit cell of the sonic crystal element to turn the diode on (sound waves only propagate one way) and off (sound waves can move back and forth). Furthermore, Li et al. make their device entirely from linear acoustic materials, which allows them to control sound propagation with a simpler and more efficient process, over a broader bandwidth, and with lower power consumption, compared to existing nonlinear sonic-crystal-based devices.