Macroscopic helical structures formed by organisms include seashells, horns, plant tendrils, and seed pods (see the figure, panel A). The helices that form are chiral; like wood screws, they have a handedness. Some are helicoids, twisted helices with saddle-like curvature and a straight centerline; others are cylindrical helices with cylindrical curvature and a helical centerline. Studies of the mechanisms underlying the formation of helicoid or helical ribbons and of the transitions between these structures (1–4) have left an important question unanswered: How do the molecular organization of the material and its global geometrical features interact to create a diversity of helical shapes? On page 1726 of this issue, Armon et al. (5) explore the rich phenomenology associated with slender strips made of mutually opposing “molecular” layers, taking a singular botanical structure—the Bauhinia seed pod—as their inspiration. They show that a single component, namely a flat strip with a saddle-like intrinsic curvature, is sufficient to generate a wide variety of helical shapes.
The supreme task of the physicist is to arrive at those universal elementary laws from which the cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition, resting on sympathetic understanding of experience, can reach them
Friday, September 23, 2011
Helical structures through simple mechanical rules
Structures of this kind commonly occurs in nature. How do we generate them artificially? Here is a review of a work that gives a simple thumb rule.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment