science blogs
The supreme task of the physicist is to arrive at those universal elementary laws from which the cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition, resting on sympathetic understanding of experience, can reach them
Friday, April 19, 2013
Friday, January 25, 2013
Friday, January 18, 2013
Thursday, March 1, 2012
Wednesday, February 15, 2012
Wednesday, February 8, 2012
The physics of floating pyramids
Results just in from an experiment that levitated open-bottomed paper pyramids on gusts of air reveal a curious phenomenon: When it comes to drifting through the air, top-heavy designs are more stable than bottom-heavy ones. The finding may lead to robots that fly not like insects or birds but like jellyfish.
......
The researchers placed hollow paper pyramids inside the cylinder. The objects were about 1 to 5 centimeters high and were made of tissue paper or letter paper on carbon fiber supports, like tiny homemade kites. Physicist Bin Liu led the experiments, attaching a beadlike weight to a post running down the center of the pyramid and changing the height of the bead to give the object a different center of mass. Common sense says that the pyramid should be most stable when the bead is at the bottom of the post, like ballast in the hold of a ship. But when the team released the pyramids over the subwoofer, the opposite was true: the bottom-heavy pyramids were likely to flip over and fall, whereas the top-heavy ones remained upright and continued to hover (see first video), the group reports in an upcoming issue of Physical Review Letters.
......The team suspected that the effect was due to swirls of air that develop along the pyramid's sides. To see the swirls in action, Zhang's group examined a two-dimensional version of the pyramid experiment in water. They placed upside-down V shapes into a pan of water and rocked it to create currents. As the water ran past the V, it created tiny whirlpools at the ends of the V's two legs (see second video). These swirls pushed away from the upside-down V, moving downward, which exerted an upward force on the V-the same mechanism that creates lift in the pyramids.
If the V was tilted, however, the swirls went in different directions: Those on the higher leg shoved it sideways, while the lower leg got a weaker upward push. This would straighten the upside-down V. Team member Leif Ristroph showed that the same sorts of swirls roll off the sides of the pyramids: They push the pyramid upright as long as the center of mass is above the tilted-up side, much in the same way that you can balance a vertical stick on the end of your finger by moving the bottom of the stick in the direction of the tilt, Zhang says. For bottom-heavy pyramids, this same mechanism causes them to flip over-it's like moving the top of the stick in the direction of the tilt, encouraging it to fall.
Monday, February 6, 2012
Paring with spin fluctuations
Hattori et al. are able to correlate this field-angle-dependence of the magnetic fluctuations with another striking property ofUCoGe , which is that its superconductivity is exceptionally sensitive to the direction of an applied magnetic field. When the magnetic field is perpendicular to thec axis the superconductivity is very robust, surviving to around10 tesla; however, as the field direction is rotated towards thec axis, the critical field for destruction of superconductivity falls precipitously. An obvious interpretation of this behavior would be that the component of the applied field that is parallel to thec axis induces a large magnetic polarization, and the large internal field thus generated disrupts the paired electrons either through coupling to their spins or their orbital motion. This sort of physics is very well understood (indeed this is why ordinary superconductors don’t like magnetic fields) so it can be modeled quite accurately and, surprisingly, it doesn’t fit the measurements inUCoGe . Rather, Hattori et al. argue that their results are better explained if the magnetic field is disrupting not the pairs directly, but rather the underlying pairing mechanism. This, in particular, explains the striking parallel in the suppression of the magnetic fluctuations and the suppression of the superconductivity as the magnetic field is rotated towards thec axis. It is strong evidence that magnetic fluctuations are the ones doing the pairing.