High-TC superconductors have layered crystal structures, where TC depends on bond lengths, ionic valences, and Coulomb coupling between electronic bands in adjacent, spatially separated layers. Analysis of 31 high-TC materials—cuprates, ruthenates, rutheno-cuprates, iron pnictides and organics—has revealed that the optimal transition temperature TCO is given by the universal expression kB-1e2Λ / ℓζ. Here, ℓ is the spacing between interacting charges within the layers, ζ is the distance between interacting layers, Λ is a universal constant, equal to about twice the reduced electron Compton wavelength, kB is Boltzmann's constant and e is the elementary charge. Non-optimum compounds in which sample degradation is evident typically exhibit TC below TCO. Figure 1 shows TCO versus (ση/A)1/2/ζ—a theoretical expression determining 1 / ℓζ, where σ is the charge fraction, η is the layer number count and A is the formulaic area. The diagonal black line represents the theoretical TCO. Coloured data points falling within ± 1.4 K of the line constitute validation of the theory.
The elemental building block of high-TC superconductors comprises two adjacent and spatially separated charge layers. The factor e2 / ℓζ, determining TCO arises from Coulomb forces between them. Remarkably an explicit dependence on phonons, plasmons, magnetism, spins, band structure, effective masses, Fermi-surface topologies and pairing-state symmetries in high-TC materials is absent. The magnitude of Λ suggests a universal role of Compton scattering in high-TC superconductivity, as illustrated in figure 2 that considers pairing of carriers (h) mediated by electronic excitation (e) via virtual photons (ν). Several other important predictions are given. A conducting charge sheet is non-superconducting without a second mediating charge layer next to it, and a charge structure representing a room-temperature superconductor yet to be discovered is presented.
The supreme task of the physicist is to arrive at those universal elementary laws from which the cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition, resting on sympathetic understanding of experience, can reach them
Sunday, July 31, 2011
Another simple and universal role in high Tc ?
These authors presented a very simple rule that seems validated by their analysis of experimental data [J. Phys.: Condens. Matter 23 (2011) 295701 (17pp)]. In this rule, the Tc of optimal compounds is essentially set by two length scales and the electron charge, i.e., Tc~e^2/l\times l'. What is striking is that, this rue was argued to cover a wide range of materials, including cuprates, pnictides and ruthenates. They proposed a paring mechanism via Compton scattering: e.g., the holes in the conducting layer is scattered by the electrons in the charge reservoir layer. Instead of forming excitons, superfluid forms. The following is a brief sojourn over this work [http://iopscience.iop.org/0953-8984/labtalk-article/46706]:
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment